Hellinger–Kantorovich barycenter between Dirac measures

نویسندگان

چکیده

The Hellinger-Kantorovich (HK) distance is an unbalanced extension of the Wasserstein-2 distance. It was shown recently that HK barycenter exhibits a much more complex behaviour than Wasserstein barycenter. Motivated by this observation we study in detail for case where input measures are uncountable collection Dirac measures, particular dependency on length scale parameter HK, question whether discrete or continuous and relation between expected empirical analytical results complemented with numerical experiments demonstrate can provide coarse-to-fine representation pointcloud measure.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample-based Optimal Transport and Barycenter Problems

A methodology is developed for the numerical solution to the sample-based optimal transport and Wasserstein barycenter problems. The procedure is based on a characterization of the barycenter and of the McCann interpolants that permits the decomposition of the global problem under consideration into various local problems where the distance among successive distributions is small. These local p...

متن کامل

The Barycenter Heuristic and the Reorderable Matrix

Bertin’s reorderable matrix (Bertin 1981, 1983, 2001) is a simple visualization method for exploring tabular data. The basic idea is to transform a multidimensional data set into a 2D interactive graphic. The graphical presentation of a data set contains rows and columns which can be permuted, allowing different views of the data set. The actual data values are replaced with symbols, say circle...

متن کامل

On the Barycenter of the Tent Map

It is well known that the average position or barycenter of generic orbits for the standard tent map is 0.5. Periodic orbits are exceptional orbits in the sense that most of them have barycenters different from 0.5. In this paper we prove that for any positive integer n, there exist n distinct periodic orbits for the standard tent map with the same barycenter. We also provide some patterns of p...

متن کامل

Vertex Barycenter of Generalized Associahedra

We show that the vertex barycenter of generalized associahedra and permutahedra coincide for any finite Coxeter system.

متن کامل

A direct derivation of the Dirac equation via quaternion measures

Quaternion measurable processes are introduced and the Dirac equation is derived from the Langevin equation associated with a two-valued process.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2023

ISSN: ['1262-3377', '1292-8119']

DOI: https://doi.org/10.1051/cocv/2022088